Python Regression Program of Combined Cycle Power Plant

In [1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.l...

In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
In [2]:
df = pd.read_excel("Folds5x2_pp.xlsx")
In [3]:
df
Out[3]:
ATVAPRHPE
014.9641.761024.0773.17463.26
125.1862.961020.0459.08444.37
25.1139.401012.1692.14488.56
320.8657.321010.2476.64446.48
410.8237.501009.2396.62473.90
526.2759.441012.2358.77443.67
615.8943.961014.0275.24467.35
79.4844.711019.1266.43478.42
814.6445.001021.7841.25475.98
911.7443.561015.1470.72477.50
1017.9943.721008.6475.04453.02
1120.1446.931014.6664.22453.99
1224.3473.501011.3184.15440.29
1325.7158.591012.7761.83451.28
1426.1969.341009.4887.59433.99
1521.4243.791015.7643.08462.19
1618.2145.001022.8648.84467.54
1711.0441.741022.6077.51477.20
1814.4552.751023.9763.59459.85
1913.9738.471015.1555.28464.30
2017.7642.421009.0966.26468.27
215.4140.071019.1664.77495.24
227.7642.281008.5283.31483.80
2327.2363.901014.3047.19443.61
2427.3648.601003.1854.93436.06
2527.4770.721009.9774.62443.25
2614.6039.311011.1172.52464.16
277.9139.961023.5788.44475.52
285.8135.791012.1492.28484.41
2930.5365.181012.6941.85437.89
..................
95388.6438.561016.5166.03484.45
953910.5337.501008.5599.91472.32
954023.5350.051005.6378.40443.71
954124.9067.251017.7766.17433.71
95425.0139.401003.6991.90475.34
954322.6669.841006.1682.79439.06
954429.7657.191008.5951.10436.21
954526.3061.411012.4556.85448.55
954630.1774.221007.4649.27432.00
95478.0240.231017.4290.26484.22
954819.1250.161011.5299.71451.49
954914.8742.181015.2374.41465.89
95509.7142.441014.2994.03481.03
955124.3377.541008.5082.45435.38
95527.1739.401011.4890.38484.33
955324.6162.961020.1063.83445.79
955423.4866.441011.2861.11443.21
955523.7070.321007.2166.85439.59
955625.4469.591008.2280.73433.97
955717.4662.101019.9683.99451.06
955822.9762.401010.2575.18445.30
955926.2249.821015.4855.80454.20
956023.2768.281005.0174.83444.86
956111.7641.581020.9188.35465.45
956214.0240.101015.5682.44467.32
956316.6549.691014.0191.00460.03
956413.1939.181023.6766.78469.62
956531.3274.331012.9236.48429.57
956624.4869.451013.8662.39435.74
956721.6062.521017.2367.87453.28
9568 rows × 5 columns
In [4]:
np.mean(df)
Out[4]:
AT      19.651231
V       54.305804
AP    1013.259078
RH      73.308978
PE     454.365009
dtype: float64
In [5]:
df.median()
Out[5]:
AT      20.345
V       52.080
AP    1012.940
RH      74.975
PE     451.550
dtype: float64
In [6]:
df.std()
Out[6]:
AT     7.452473
V     12.707893
AP     5.938784
RH    14.600269
PE    17.066995
dtype: float64
In [7]:
df.corr()
Out[7]:
ATVAPRHPE
AT1.0000000.844107-0.507549-0.542535-0.948128
V0.8441071.000000-0.413502-0.312187-0.869780
AP-0.507549-0.4135021.0000000.0995740.518429
RH-0.542535-0.3121870.0995741.0000000.389794
PE-0.948128-0.8697800.5184290.3897941.000000
In [8]:
sns.heatmap(df.corr(), annot = True)
plt.show()
In [9]:
ambient_temperature = df['AT']
exhaust_vacuum = df['V']
ambient_pressure = df['AP']
relative_humidity = df['RH']
plant_energy_output = df['PE']
In [10]:
fig,ccpp = plt.subplots(2,3)
In [11]:
ccpp[0,0].boxplot(ambient_temperature)
ccpp[0,1].boxplot(exhaust_vacuum)
ccpp[0,2].boxplot(ambient_pressure)
ccpp[1,0].boxplot(relative_humidity)
ccpp[1,1].boxplot(plant_energy_output)
Out[11]:
{'boxes': [<matplotlib.lines.Line2D at 0x7f17330399b0>],
 'caps': [<matplotlib.lines.Line2D at 0x7f1733041400>,
  <matplotlib.lines.Line2D at 0x7f1733041828>],
 'fliers': [<matplotlib.lines.Line2D at 0x7f173304a0b8>],
 'means': [],
 'medians': [<matplotlib.lines.Line2D at 0x7f1733041c50>],
 'whiskers': [<matplotlib.lines.Line2D at 0x7f1733039b00>,
  <matplotlib.lines.Line2D at 0x7f1733039f98>]}
In [12]:
plt.figure(figsize=(20,8))
plt.show()
<matplotlib.figure.Figure at 0x7f173306cba8>
In [13]:
#ambient_temperature
In [14]:
plt.hist(ambient_temperature,bins=10)
plt.show()
In [15]:
#ambient_pressure
In [16]:
plt.hist(ambient_pressure,bins=20)
plt.show()
In [17]:
plt.hist(exhaust_vacuum,bins=10)
plt.show()
In [18]:
plt.hist(relative_humidity,bins=10)
plt.show()
In [19]:
plt.hist(plant_energy_output,bins=20)
plt.show()
In [20]:
#80% data as Train dataset and 20% as Test dataset
In [21]:
xtrain = df.iloc[:7655,:4]
ytrain = df.iloc[:7655,4:]
#xtrain
In [22]:
xtest = df.iloc[7655:,:4]
ytest = df.iloc[7655:,4:]
#ytest
In [23]:
lin_model = LinearRegression()
In [24]:
lin_model.fit(xtrain,ytrain)
Out[24]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
In [25]:
lin_model.predict(xtest)
Out[25]:
array([[441.82904193],
       [445.14394502],
       [426.15474298],
       ...,
       [432.47274932],
       [443.10509547],
       [449.74518291]])
In [26]:
lin_model.score(xtest,ytest)
Out[26]:
0.9246449943523912
In [27]:
sns.lmplot(x="AT", y="PE", data=df)
plt.title('Ambident Temerature and Plant Energy Relation')
plt.show()
In [28]:
sns.lmplot(x="AP", y="PE", data=df)
plt.title('Ambident Pressure and Plant Energy Relation')
plt.show()
In [29]:
sns.lmplot(x="V", y="PE", data=df)
plt.title('Exhaust Volume and Plant Energy Relation')
plt.show()
In [30]:
sns.lmplot(x="RH", y="PE", data=df)
plt.title('Relative Humidity and Plant Energy Relation')
plt.show()
In [31]:
quad_feature = PolynomialFeatures(degree=2)
xtrain_quad = quad_feature.fit_transform(xtrain)
xtest_quad = quad_feature.transform(xtest)
quad_model = LinearRegression()
quad_model.fit(xtrain_quad,ytrain)
quad_model.predict(xtest_quad)
quad_model.score(xtest_quad,ytest)
Out[31]:
0.9338502280297939
In [32]:
quad_feature = PolynomialFeatures(degree=3)
xtrain_quad = quad_feature.fit_transform(xtrain)
xtest_quad = quad_feature.transform(xtest)
quad_model = LinearRegression()
quad_model.fit(xtrain_quad,ytrain)
quad_model.predict(xtest_quad)
quad_model.score(xtest_quad,ytest)
Out[32]:
0.9367778711840852
In [33]:
quad_feature = PolynomialFeatures(degree=4)
xtrain_quad = quad_feature.fit_transform(xtrain)
xtest_quad = quad_feature.transform(xtest)
quad_model = LinearRegression()
quad_model.fit(xtrain_quad,ytrain)
quad_model.predict(xtest_quad)
quad_model.score(xtest_quad,ytest)
Out[33]:
0.9380846117329315
In [34]:
quad_feature = PolynomialFeatures(degree=5)
xtrain_quad = quad_feature.fit_transform(xtrain)
xtest_quad = quad_feature.transform(xtest)
quad_model = LinearRegression()
quad_model.fit(xtrain_quad,ytrain)
quad_model.predict(xtest_quad)
quad_model.score(xtest_quad,ytest)
Out[34]:
0.936743890334244
In [35]:
quad_feature = PolynomialFeatures(degree=6)
xtrain_quad = quad_feature.fit_transform(xtrain)
xtest_quad = quad_feature.transform(xtest)
quad_model = LinearRegression()
quad_model.fit(xtrain_quad,ytrain)
quad_model.predict(xtest_quad)
quad_model.score(xtest_quad,ytest)
Out[35]:
0.9388071352817638
In [36]:
quad_feature = PolynomialFeatures(degree=7)
xtrain_quad = quad_feature.fit_transform(xtrain)
xtest_quad = quad_feature.transform(xtest)
quad_model = LinearRegression()
quad_model.fit(xtrain_quad,ytrain)
quad_model.predict(xtest_quad)
quad_model.score(xtest_quad,ytest)
Out[36]:
0.9364924482642509
In [37]:
quad_feature = PolynomialFeatures(degree=8)
xtrain_quad = quad_feature.fit_transform(xtrain)
xtest_quad = quad_feature.transform(xtest)
quad_model = LinearRegression()
quad_model.fit(xtrain_quad,ytrain)
quad_model.predict(xtest_quad)
quad_model.score(xtest_quad,ytest)
Out[37]:
0.9391750864551984
In [38]:
quad_feature = PolynomialFeatures(degree=9)
xtrain_quad = quad_feature.fit_transform(xtrain)
xtest_quad = quad_feature.transform(xtest)
quad_model = LinearRegression()
quad_model.fit(xtrain_quad,ytrain)
quad_model.predict(xtest_quad)
quad_model.score(xtest_quad,ytest)
Out[38]:
0.9380537936399923
In [39]:
quad_feature = PolynomialFeatures(degree=10)
xtrain_quad = quad_feature.fit_transform(xtrain)
xtest_quad = quad_feature.transform(xtest)
quad_model = LinearRegression()
quad_model.fit(xtrain_quad,ytrain)
quad_model.predict(xtest_quad)
quad_model.score(xtest_quad,ytest)
Out[39]:
0.9383741698139699
In [40]:
plt.scatter(xtrain['AT'],ytrain)
plt.show()

In [ ]:
Get dataset from "https://github.com/Jakesh-Bohaju/Python-Data-Science/blob/master/Folds5x2_pp.xlsx"
In [ ]:

COMMENTS

Name

Accident Alert,1,AI,2,Array,1,Aurdino,1,C,2,Computer Graphics,9,Data Science,3,Dataset,1,Decoratot,1,Django,1,ESP32,1,Fixed point/iteration method,1,Greater or smaller,1,html,1,Image Processing,1,JAVA,1,Javascript,22,Machine Learning,1,Matlab,3,Numerical Method,13,OOP,1,Other,3,PHP,1,Point operation,1,Python,11,Raspberry pi,1,Recommendation System,1,Regression,1,Reservation System,1,Robotics,1,Simulation,2,sine wave,1,String Handling Function,1,Web scrap,1,Webpage,1,
ltr
item
COMPUTER PROGRAMMING: Python Regression Program of Combined Cycle Power Plant
Python Regression Program of Combined Cycle Power Plant
%0AAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo%0AdHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd8FNXawPHf2U1CT0gCJFRBqqhA%0AIKCiIgFDCUUQUUCKCpcmigiKIIoFEXwRREUUBa+KhYtYUIKAFAPipSNgAUIVQhLTIJC+e94/sqwJ%0AaZu2O5v7fO9nP3dmzjM7z7Dx2bNnzs4qrTVCCCGMweTqBIQQQvxDirIQQhiIFGUhhDAQKcpCCGEg%0AUpSFEMJApCgLIYSBSFEWQggDkaIshBAGIkVZCCEMxKO8D5AZd7LCfWXQcvaIq1MoF6MGrnB1CmUu%0AQ1tcnUK5+C56v6tTKBdZGedVaZ+jODXHs9b1pT5eWZOeshBCGEi595SFEMKprO796UiKshCiYrFk%0AuTqDUpGiLISoULS2ujqFUpGiLISoWKxSlIUQwjikpyyEEAYiF/qEEMJApKcshBDGoWX2hRBCGIhc%0A6BNCCAOR4QshhDAQudAnhBAGIj1lIYQwELnQJ4QQBiIX+oQQwji0m99Du0LcT3nW3IV06TOEAcPH%0AuzqVYvn54J/0f/I1+j4xj+XfbsnTfiEukdEvv8v9zyzivqdfZ/uBP/K03/rQs3z0/TYnZey4h14Y%0Aw+KflvLaD2/Q5Kbr8415/os5LNqyhPnhi5gfvghvfx8AbujUmnnrXuezE2u4Jew2Z6ZdqNEvjuWd%0AiPdYtOFNrr+pab4xL6+ay9tbl7Jw/WIWrl+Mj+2crrq1d2e+PvsdTds0c0bKDlm08CX+/H0H+/dt%0AIqjdTfnGDB7cn/37NvHrwS28OnemffvIEfdz4fwh9u7ZyN49G3nk4aHOSrtg2ur4w4AqRE95QFgo%0Awwb1Z+bLC1ydisMsVitzP/ya92aOJcDfh2HPvknXDjfStEGAPeb9rzfT89Y23B/amRPnYpg0fznr%0A37rB3r7gk++4o10rV6RfqHYhHQhsUpfJd02geVALRs8Zz6wBT+cb+9bkhZw8fCLXtrioON6Z+ib9%0Axg5wRroOaR/SgXqN6zGxyzhaBLVk3CsTmH7PtHxjF01+nROHIvNsr1ytCn0f6cfR/X+Wd7oO692r%0AG82bNaFV6zu4pVN7lrz9Kp3v6Jcrxs/Pl/mvzqLTrb2Ii0tgxfI36BZyB1u27gDgP6vXMvmJWa5I%0AP39uPnxRIXrKwe1uxse7hqvTKJYjkWdpGFiLBgH+eHp40Ou2dmzb+1vuIAWXU9MBuJySSm1fb3vT%0Alj1HqF/HL1cRN4qOoZ2IWLMNgOMHjlHNuxo16/g6vP/f52I5++cZrFbj/JJYpx63snVN9qeZYweO%0AUs27Gr7FOCeAYdMe5Oula8hMzyyPFEukX7+efPLplwDs2r0fn5o+BAbWyRVzfZNGREaeIi4uAYDN%0AW7YzcGCY03N1WBn2lJVSvZRSR5VSkUqpZ/Jpb6SU2qqUOqCUOqSUKvU/TIFFWSm1sbRPLgoWm3iJ%0AQP+a9vU6/j7EJF7MFTNhUA/W7dhP6KNzePS1FTzzUHbPMSUtnQ+/28r4QaFOzdlRvoF+xEfF2dfj%0Ao+PxC/DLN3bCgseZH76Iex+/31nplYh/oD/xF645p0D/fGMfWzCZhesXM/jxB+zbrr+pKbXq1mbf%0Alr3lnmtx1K8XyLm/ouzr589doH69wFwxkSdO06JFU667rgFms5l7+vekYcN69vZ7B4axf98mVn2x%0AjAYN6uFylkzHH4VQSpmBJUBvoDUwVCnV+pqwWcB/tNZBwBDgndKmX1hPuXZpn1yUzvqdB+jfJZhN%0AS2ax5OlHePadz7FarSz9ciPDe3ehauVKrk6xVN6avJCnek5m9uAZtOrYmi73dnV1SqW26PEFPNHj%0AMWbe9wytO91I10EhKKV4+LnRfDhnuavTK5GkpItMemwGn3+6lJ+2fs2Z0+ewWLIvpn2/bhNNm99K%0A+w6h/PhjBB8uf8PF2ZI9fOHoo3CdgEit9UmtdQbwBXDPNTEauPoR1geIopQKG1P2UUrdW1Cj1vqr%0AgtqUUmOBsQDvvD6HMSMNMPhvMHV8vYmOT7Kvx8ZfJMA390Whr7fuYemMMQC0bdGY9MwsEpNTOBz5%0AFz/uOswbn60jOSUVpRRenp4M7Xm7U88hpx4je9N9SA8AThw6jn+9WvY2/0B/EmIS8uyTaNuWdiWN%0An7+NoGm75kR8tc0p+Tqi98gwQof2BCDy0HH8615zTtHxefZJsJ9TKhHf/ETzti3YvXEXjVpex5xV%0AcwGoWduXmctnMXf0nHzHnsvbhPGjGD36QQD27j1Igxy93voN6nI+KjrPPt+v28T36zYBMGb0g1hs%0A35pLSEi0xyxf8RnzXn22PFN3TNldwKsP/JVj/RxwyzUxLwAblVKPAdWAu0t70EKLMtAXyO8nuDVQ%0AYFHWWi8DlkHxfu77f8mNTRtyNjqOc7EJBPh588MvB3l10rBcMXVr1WTXkePcc1dHTp6PISMjCz/v%0Aavz7hYn2mKVfbqRqZS+XFmSAjR+vZ+PH6wEI6taBnqPC2Ll2O82DWpCSfIWk2MRc8SaziWre1UhO%0ATMbsYaZ992AO7/jVFakXaP3H4az/OByADt2CCRvVlx1rI2gR1JKU5BQS8z2n6iQnXsLsYSb47o4c%0A2nGQlOQURrV70B738qq5/PuVFS4pyABL3/2Ipe9+BEBY7+5MnPAQq1Z9yy2d2nPp4iWio2Pz7FO7%0Atj9//x1PzZo+jB8/iqHDsmc6BQbWscf369eDP/90zTnlUowLfTk7kDbLbPXLUUOBf2utX1dK3QZ8%0AopS6SZfiN6kKK8pntNaPlPSJnemp2fPYc+AQSUmX6D5gOBNHj2BQv56uTqtQHmYzMx4awIRX38dq%0AtTKgayeaNQxkyeoN3NikAV2Db2Tq8H689P5qVoZvRyl4acL9KJXfe6SxHNiyj6CQDiyOeJeM1HSW%0ATnvT3jY/fBHTw6bg6eXJzE9ewOxhxmQ2cXjHr2z+PLsn1rRNM6Yue4ZqPtXpcHcwg6cMZVro4646%0AHQD2bdlLh5Bglm5fRnpqOm9NW2xvW7h+MU/2noynlyezV75oOyczh3YcZNNnxr40E75+M716dePo%0AHz+TkprKmDFP2tv27tlIcMfsTz+LFr5EmzbZw6lzXlnE8eMnAXhs0iP07duDrCwLiQlJPDLmCeef%0AxLWKUZRzdiDzcR5omGO9gW1bTqOBXrbn+kUpVRmoBeR9Z3OQ0jr/jqxS6oBt8Pra7XcAQ7XWjzpy%0AgIrYU7acPeLqFMrFqIErXJ1Cmctw8y8SFOS76P2uTqFcZGWcL3WvI3XbCodrTpWujxR4PKWUB3AM%0A6E52Md4DDNNa/5YjZj2wSmv9b6XUDcBmoL4uqLA6oLCe8ogcBw4ChgGDgVMUMnQhhBAuVUZjylrr%0ALKXUJGADYAZWaK1/U0q9BOzVWq8FpgLvK6WmkD2s+1BpCjIUXpQzlFKzyR4ziQNWkd2zDinNAYUQ%0AolyV4ZdHtNbhQPg1257Psfw7UKYXdAoryn8C24G+WutIANu7gRBCGJdBvz7tqMLmKd8LXAC2KqXe%0AV0p1J/+ZGEIIYRxlN0/ZJQosylrrb7TWQ4BWwFbgCaCOUmqpUqqHsxIUQohicfMbEhV57wut9RWt%0A9Wda635kTwk5AEwv98yEEKIksrIcfxhQse4Sp7VOJHtOX3EmVwshhPMYtAfsqApx604hhLAz6Fix%0Ao6QoCyEqFukpCyGEgUhPWQghDER6ykIIYSAGnVXhKCnKQoiKpXS3nnA5KcpCiIpFxpSFEMJApCgL%0AIYSByIU+IYQwEIt7/7BBuRflivgrHeZGN7k6hXJRW7n3r2Pnp04F7Xds86ri6hSMS4YvhBDCQKQo%0ACyGEgciYshBCGIe2yjxlIYQwDhm+EEIIA5HZF0IIYSDSUxZCCAORoiyEEAYiNyQSQggDkZ6yEEIY%0AiEyJE0IIA5HZF0IIYRxahi+EEMJAZPhCCCEMRO59IYQQBiI9ZSGEMJAsudAnhBDGIcMXzvHzwT+Z%0A//FarFYrA0M6MfqebrnaL8QlMmvpKpKvpGK1Wpk8NIw7g27I1T5w2gIm3BfKqL5dnZx98c2au5CI%0An3fj51uTb1a+6+p0iu2+2Q9xY0gQGanpfDJtKed+O1Vg7Lj3n8K/UQBze04DICjsVsKeuI+AZvVZ%0AcM+znD180llpF6rnCyNpHtKWzNQMvp32HtFHTueJGfbR01SvUxOTh5mzu4+y/rkP0VbNDWGduGvK%0AIGo3q8cH/Z/nwuGC/z2cbd7/PUdoj66kpqYycdx0Dv36W56YQYP78uS0CWituXAhlnFjppIQn8jy%0AjxbTvHkTAHx8vLl48RJdOvd39ink5ubDFyZXJ+AIi9XK3A+/5p3po/l6wTR+2HmQE+dicsW8//Vm%0Aet7ahv/Mm8L8x4czd8XXudoXfPIdd7Rr5cy0S2VAWCjvLpzj6jRKpHXXdtRuEsiLXSfz+cz3GfLK%0A6AJj2/bsRHpKWq5tUUf/4v3xr3Ni9x/lnarDmoW0xb9JIG/fNZXvZyynz5yH84378tG3WNZ7Ju+G%0ATqeafw1a97kFgL+PnWP1uDc4s+tPZ6ZdpNAed9G0aWM6tO3OE4/N4vU3XswTYzabefW15+gXNpw7%0Abu3L70f+5F/jRgAwetRkunTuT5fO/Vn77Qa+W7vR2aeQh7ZaHX4YUYFFWSm1RCl1uzOTKciRyLM0%0ADKxFgwB/PD086HVbO7btvebdXMHl1HQALqekUtvX2960Zc8R6tfxo2mDAGemXSrB7W7Gx7uGq9Mo%0AkTY9OrL7qwgATh84TpUa1fCuXTNPnFfVSnQb04cf3voq1/aYE+eJPXnBKbk6qmVoB35dsx2A8wci%0AqeRdlep18p5TxuVUAEweZsyeHvbbMMRFRhFvsHMCCOt7N198nt2B2bvnID4+3gQE1M4Vo5RCKUW1%0Aqtm/C1jDuzrRF2LyPNfAe8NYs/q78k+6KFbt+MOACuspHwMWKKVOK6VeU0oFOSupa8UmXiLQ/5//%0AAOr4+xCTeDFXzIRBPVi3Yz+hj87h0ddW8MxDAwBISUvnw++2Mn5QqFNz/l9WM8CXxKh4+3pSdDw1%0AA/3yxPWd+gCbP/iejLQMZ6ZXIjUC/biU45ySoxOoEeCbb+yDH09n6v6lpF9J44/wXc5KsUTq1g3g%0A/Ll/3iyioqKpWy935yUrK4upTzzPjl3h/BG5k5atmvHJR6tzxXS+vSOxsXGcPHHGKXkXqgyLslKq%0Al1LqqFIqUin1TCFxg5RSWikVXNr0CyzKWuvFWuvbgLuAeGCFUupPpdRspVSL0h64rK3feYD+XYLZ%0AtGQWS55+hGff+Ryr1crSLzcyvHcXqlaueL/U7M7qt76O2o0COLRhj6tTKXOfjpzPwo6P4uHlQZPO%0AN7o6nVLz8PDgkTHDuOv2/tzQrDO/HTnKlGnjc8UMGtyXNau/d1GG17BYHH8UQillBpYAvYHWwFCl%0AVOt84moAk4EyeQcu8kKf1voMMB+Yb+strwCeB8wF7aOUGguMBXj72YmMvrdnqZKs4+tNdHySfT02%0A/iIBvj65Yr7euoelM8YA0LZFY9Izs0hMTuFw5F/8uOswb3y2juSUVJRSeHl6MrSnIUZmKowuI3rQ%0AeWh3AM78egLfev72tpqB/iRFJ+SKb9K+BY3aXM+LO97CZDZTw9+HyV88z+IhLzk178IEjwyl/ZAQ%0AAKIOncQ7xznVCPQjOSaxwH0t6Zkc3biPFj06cHLHkXLPtTjGjB3OyIfuB2D/vsPUb1DX3lavXiAX%0AonIPTdzcJvuC+elTZwH45qtwnnhynL3dbDbTt39PQu4YUN6pO6QMf6OvExCptT4JoJT6ArgH+P2a%0AuJfJrpFPlcVBiyzKSikPst8phgDdgW3AC4Xto7VeBiwDSNu/ttT/Qjc2bcjZ6DjOxSYQ4OfND78c%0A5NVJw3LF1K1Vk11HjnPPXR05eT6GjIws/Lyr8e8XJtpjln65kaqVvaQgl4OITzYS8Un2RZ4bQ4Lo%0AMqon+9bupHFQc1KTU7j0d1Ku+B0rN7Fj5SYA/BrUZvzy6YYqyAB7P97E3o+zc2zerR0dR/Xgt7W/%0AUD+oGenJqVyOzX1OnlUrUal6FS7HJqHMJpp3C+LsHmNd2AP4YNlKPli2EoAePbvyr3EjWLP6e4I7%0AtuPSpWRiYv7OFX8hKoaWrZrhX8uP+LgEuna7naNHT9jbu4bczvFjJ4mKinbqeRSoGEU5ZwfSZpmt%0AfgHUB/7K0XYOuOWa/dsDDbXW65RS5VuUlVKhwFAgDNgNfAGM1VpfKYsDF4eH2cyMhwYw4dX3sVqt%0ADOjaiWYNA1myegM3NmlA1+AbmTq8Hy+9v5qV4dtRCl6acD9KKWenWmaemj2PPQcOkZR0ie4DhjNx%0A9AgG9SvdJw5n+W3rAW4MCWL2T4vJTM1g5VNL7W3PhM9nXtj0Qvdv07Mjg194mOp+3oxfMZ3zf5xh%0Ayci55Z12oY5vOUizkHZMilhIZmoGa6e9Z28bGz6XZWEz8apaiQc+eBIPL0+USXH6l9/Zu3IzAC17%0ABtP7xVFU9avB0A+fIub3M3w6cr6rTsdu44ZthPbsyv5DW0hNTeXR8f+8NhE719Klc3+io2N57dW3%0AWLfhM7Iys/jrbBQTxz9tj7v3vj7GuMB3VTFmVeTsQBaXUsoELAQeKsn+BT6vLuAu/UqpLcBnwBqt%0AdcGf04pQFj1lozE3usnVKZSLKcEzXJ1Cmauj3WYqfrEsijf2BcSSSrwcWeqeVPLE3g7XnBrvrC/w%0AeEqp24AXtNY9beszALTWr9rWfYATwGXbLoFAAtBfa723ZNkX0lPWWncrqE0IIQyr7MaU9wDNlVJN%0AgPNkD+Hax0211heBWlfXlVLbgGmlKcjgRt/oE0IIR2hL2XwpRGudpZSaBGwge2LDCq31b0qpl4C9%0AWuu1ZXKga0hRFkJULGX4pRCtdTgQfs225wuI7VoWx5SiLISoUMpwSpxLSFEWQlQsUpSFEMJAjHmf%0AIYdJURZCVCg6y72rshRlIUTF4t41WYqyEKJikQt9QghhJNJTFkII45CeshBCGIn0lIUQwjh0lqsz%0AKB0pykKICkVLT1kIIQxEirIQQhiH9JSFEMJApCgXYdTAFeV9CKerrSrmL2Mv2vuqq1Mocyc6T3J1%0ACuVi2nN3ujoFw9IW9/0ZOJCeshCigpGeshBCGIi2Sk9ZCCEMQ3rKQghhIFpLT1kIIQxDespCCGEg%0AVpl9IYQQxiEX+oQQwkCkKAshhIFo976dshRlIUTFIj1lIYQwEJkSJ4QQBmKR2RdCCGEc0lMWQggD%0AkTFlIYQwEJl9IYQQBiI9ZSd66IUxBIV0ID01naXT3uTUkZN5Yp7/Yg6+dXzJSMsA4JURL3Ap/iI3%0AdGrNqNmjadSqMYsfW8Cu8F+cnX6+7pv9EDeGBJGRms4n05Zy7rdTBcaOe/8p/BsFMLfnNACCwm4l%0A7In7CGhWnwX3PMvZw3n/PYxm1tyFRPy8Gz/fmnyz8l1Xp1Mi1e7sQJ1nx6HMJpJWbyBh2epc7VWC%0AbyLg2bFUatmEqCnzSN7ws4syLZqpyU14dR8GJhNZv0aQtSs8V7v5ptvxCnkAnZwIQOb+zVgORaDq%0ANMSrx0hUpSpgtZL5y/dY/tztilPIw2I1uTqFUnGbotwupAOBTeoy+a4JNA9qweg545k14Ol8Y9+a%0AvJCTh0/k2hYXFcc7U9+k39gBzkjXIa27tqN2k0Be7DqZxkHNGfLKaBYMmJVvbNuenUhPScu1Lero%0AX7w//nWGzv2XM9ItEwPCQhk2qD8zX17g6lRKxmQiYPZE/nr4WTKj42i85g0ub/4vGSf+sodkXYjl%0AwjML8Rs9yIWJOkApvEJHkL5qATo5gcqjnscSeRAdH5UrLOuP3WT+uDL3vpkZZKz7AJ0Yg6pek8qj%0AZpN66jCkpzrxBPLn7sMXbvOW0jG0ExFrtgFw/MAxqnlXo2YdX4f3//tcLGf/PIPVapxXrE2Pjuz+%0AKgKA0weOU6VGNbxr18wT51W1Et3G9OGHt77KtT3mxHliT15wSq5lJbjdzfh413B1GiVWuU0LMs5E%0AkflXNGRmcWldBNXvvi1XTOb5WNKPngarsW9XZqp7PTopFn3xb7BayPpjN+bmQQ7tqxNj0Ikx2cuX%0Ak9Apl1BVvcszXYdZtXL4YUSF9pSVUgOAZsBhrfUG56SUP99AP+Kj4uzr8dHx+AX4kRSbmCd2woLH%0AsVqs7PrhF7568z/OTLNYagb4khgVb19Pio6nZqAfl/5OyhXXd+oDbP7ge/uQjHAdzwB/sqL/+TvM%0Aio6jStuWLsyo5FQNX/SlBPu6Tk7AVLdpnjiPlh0wN2yBNTGazM1foJMTcrWb6jYBswc6Mbbcc3aE%0Au0+JK7CnrJR6B5gC+AMvK6Wec1pWpfDW5IU81XMyswfPoFXH1nS5t6urUyqV+q2vo3ajAA5t2OPq%0AVMT/IEvkQVLffYq0D5/Heup3vPqMyR1QzQevPv8iI3w5YIxPoVo7/iiKUqqXUuqoUipSKfVMPu2V%0AlFKrbO27lFKNS5t/YT3lLkBbrbVFKVUV2A687MiTKqXGAmMBOvi1pWn1kuXZY2Rvug/pAcCJQ8fx%0Ar1fL3uYf6E9CTEKefRJt29KupPHztxE0bdeciK+2lej45aHLiB50HtodgDO/nsC3nr+9rWagP0nR%0Auc+pSfsWNGpzPS/ueAuT2UwNfx8mf/E8i4e85NS8RbbMmHg8Av/5O/QIrEVmTHwhexiXTk5EefvZ%0A11UNP/Tlaz55pl2xL2Yd+gnPkMH/tHlVpvJ9U8jc/hXWKONcZC6rYQmllBlYAoQC54A9Sqm1Wuvf%0Ac4SNBhK11s2UUkOA+cADpTluYUU5Q2ttAdBapyilHD5TrfUyYBnAA9cNKPHb58aP17Px4/UABHXr%0AQM9RYexcu53mQS1ISb6SZ+jCZDZRzbsayYnJmD3MtO8ezOEdv5b08OUi4pONRHyyEYAbQ4LoMqon%0A+9bupHFQc1KTU/IMXexYuYkdKzcB4NegNuOXT5eC7EJph4/h1bgeng0CyIyJx7tPF6KefM3VaZWI%0A9cIplG8dlE8tdHIiHjd0Iv2793IHVfOBKxcBMDcLwhpvu4ZhMlNp4GNk/fYzlqN7nZx54cpw9kUn%0AIFJrfRJAKfUFcA+QsyjfA7xgW/4SeFsppbQu+eXGwopyK6XUIduyApra1hVg1Vq3LelBS+LAln0E%0AhXRgccS7ZNimxF01P3wR08Om4OnlycxPXsDsYcZkNnF4x69s/jy7oDVt04ypy56hmk91OtwdzOAp%0AQ5kW+rgzTyGP37Ye4MaQIGb/tJjM1AxWPrXU3vZM+HzmhU0vdP82PTsy+IWHqe7nzfgV0zn/xxmW%0AjJxb3mmXylOz57HnwCGSki7RfcBwJo4ewaB+PV2dluMsVmJeWkrD5XPAbOLilxvJiDxLrceHk3bk%0AOJe37KLyzc2pv+Q5zN7VqR5yC7UeH86pPhNcnXle2krGpk+pdP9UUCayDm9Hx0XheccArNGnsUQe%0AxLNDKObm7cBqQadeIWPdBwCYW3XC1LAFqkp1PG66A4D08A/QsX8VdkSnKMNBlPpAzhM6B9xSUIzW%0AOkspdZHsId84SkgVVNCVUtfltxloCMzQWoc5coDS9JSNqraq5OoUysWiva+6OoUyd6LzJFenUC4a%0AjQ5wdQrlour0D0s99rCz7iCHa87t0V+NwzbUarPM9kkfpdR9QC+t9Rjb+gjgFq21/Y9KKXXEFnPO%0Atn7CFlPiolxgT1lrfSbHgYOAYcBg4BSwpqQHFEKI8lSc2Rc5h1rzcZ7sTuhVDWzb8os5p5TyAHyA%0AUl1kKLAoK6VaAENtjzhgFdk965DSHFAIIcpTGc4O3wM0V0o1Ibv4DiG7c5rTWmAU8AtwH7ClNOPJ%0AUPiY8p9kz7joq7WOBFBKTSnNwYQQorxpymb2hW2MeBKwATADK7TWvymlXgL2aq3XAsuBT5RSkUAC%0A2YW7VAoryvfaDrBVKfUD8AWU0dkKIUQ5ySrDL49orcOB8Gu2PZ9jOY3sYd0yU+DcEa31N1rrIUAr%0AYCvwBFBHKbVUKdWjLJMQQoiyolEOP4yoyAl9WusrWuvPtNb9yB7oPgAUPldLCCFcxFqMhxEVa5a1%0A1jpRa71Ma929vBISQojScPeestvculMIIRxh1B6wo6QoCyEqFItBe8COkqIshKhQ3PzXoKQoCyEq%0AFqv0lIUQwjjc/WY7UpSFEBWKXOgTQggDsTp+63dDkqIshKhQLK5OoJSkKAshKhSZfSGEEAYisy+K%0AkKHd/cNEXnUq6HtZRfyVjqY733Z1CuUi7flHXZ2CYcnsCyGEMBAZvhBCCAORKXFCCGEgFukpCyGE%0AcUhPWQghDESKshBCGEgZ/kSfS0hRFkJUKNJTFkIIA3H3b0ZIURZCVCgyT1kIIQxEhi+EEMJApCgL%0AIYSByL0vhBDCQGRMWQghDERmXwghhIFY3XwAQ4qyEKJCkQt9QghhIO7dT3azojz6xbF0COlAemo6%0Ab01dzMkjJ/LEvLxqLr51fMlIywDgxeHPczH+or391t6dmf7eDKb1ncKJQ5FOy70gPV8YSfOQtmSm%0AZvDttPeIPnI6T8ywj56mep2amDzMnN19lPXPfYi2am4I68RdUwZRu1k9Puj/PBcOn3L+CRSh2p0d%0AqPPsOJTZRNLqDSQsW52rvUrwTQQ8O5ZKLZsQNWUeyRt+dlGmpTNr7kIift6Nn29Nvln5rqvTcZi5%0AdQcqDx4PykTmzh/I2Jj79fG8MwzPLn3BakWnp5H+2ZtYo8+C2YPKwx7D1Kg5aE366nexHD/sorPI%0ATXrKTtI+pAP1GtdjYpdxtAhqybhXJjD9nmn5xi6a/Hq+BbdytSr0faQfR/f/Wd7pOqRZSFv8mwTy%0A9l1TqR/UjD5zHmb5gNl54r589C0yLqcCMPjdybTucwu/ffdf/j52jtXj3qDP3EecnbpjTCYCZk/k%0Ar4efJTM6jsZr3uDy5v+SceIve0jWhVguPLMQv9GDXJho6Q0IC2XYoP7MfHmBq1NxnDJR+YFHSXlz%0AJjopjqrTF5N1aFd20bXJ3LMX/i9IAAAUn0lEQVSNzO3hAJhvvoVKg/5F6pLn8Ly9FwApr0xEVfeh%0AyqSXSZk/GbTr+6lZyvU5lIbJ1Qk4qlOPW9m6ZgsAxw4cpZp3NXzr+BbrOYZNe5Cvl64hMz2zPFIs%0AtpahHfh1zXYAzh+IpJJ3VarXqZkn7mpBNnmYMXt62P/u4yKjiD95wWn5FlflNi3IOBNF5l/RkJnF%0ApXURVL/7tlwxmedjST96Gqzu3b8JbnczPt41XJ1GsZgat8D6dxQ6PhosWWTt+wmPtrfmDkpLsS+q%0ASpW5OjhgqtuIrKO/AqAvX0SnXMnuNRuALsbDiArtKSulniysXWu9sGzTKZh/oD/xF+Ls6/HR8fgF%0A+pMYm5gn9rEFk7FarPyyfier31wFwPU3NaVW3drs27KXAePudVbahaoR6MelqHj7enJ0AjUCfLkc%0Am5Qn9sGPp1OvXVMit/3KH+G7nJlmiXkG+JMV/c9rlhUdR5W2LV2YkcjJVLMW1sS/7evWxDjMjfO+%0APp5d+uLV/V7w8CDljWeyY8+dwqPNrWTt3YbyrY25UTNMvrWxnjnmtPwL4t5v70UPX+R86x8HvFeO%0AuZSJRY8vICEmgcrVqjD9vRl0HRTCT19t4+HnRvPm1DdcnV6JfTpyPuZKnty7eCJNOt/IyR1HXJ2S%0A+B+RGfE9mRHf4xHclUq9h5L28etk/rIBU2BDqk5/E2tCLJaTf4A2Rjms0FPitNYvXl1WSg3IuV4Y%0ApdRYYCxAO9+baVz9uhIl13tkGKFDewIQeeg4/nVr2dv8A/1JiI7Ps09CTAIAaVdSifjmJ5q3bcHu%0Ajbto1PI65qyaC0DN2r7MXD6LuaPnOP1iX/DIUNoPCQEg6tBJvOv529tqBPqRHJO353+VJT2Toxv3%0A0aJHB7coypkx8XgE/vOaeQTWIjMm72smXMOaFIenb237usm3Fvpiwa9P1r6fqDx0km1nK+lrltnb%0Aqk57HWvM+XLLtTicVZKVUn7AKqAxcBq4X2ud73/ASilv4HfgG631pMKetzhjyg6fq9Z6mdY6WGsd%0AXNKCDLD+43Ce7D2ZJ3tPZteG/xIyqBsALYJakpKckmfowmQ2UcPXGwCzh5nguzty9tgZUpJTGNXu%0AQcbdPoZxt4/h2IGjLinIAHs/3sSysJksC5vJ0Y17aTvoTgDqBzUjPTk1z9CFZ9VK9nFmZTbRvFsQ%0A8SeinJ53SaQdPoZX43p4NggATw+8+3Th8ub/ujotYWM9cwxTnXoo/wAwe+DR4S6yDuV+fVTtevZl%0A802dsMbaCq9nJfCqlL29VRDaYsl1gdCVrMV4lNIzwGatdXNgs229IC8DEY48qdvMvti3ZS8dQoJZ%0Aun1Z9pS4aYvtbQvXL+bJ3pPx9PJk9soXMXuYMZnNHNpxkE2fbXRh1oU7vuUgzULaMSliIZmpGayd%0A9s/o0NjwuSwLm4lX1Uo88MGTeHh5okyK07/8zt6VmwFo2TOY3i+OoqpfDYZ++BQxv5/h05HzXXU6%0AeVmsxLy0lIbL54DZxMUvN5IReZZajw8n7chxLm/ZReWbm1N/yXOYvatTPeQWaj0+nFN9Jrg682J7%0AavY89hw4RFLSJboPGM7E0SMY1K+nq9MqnNVK2qqlVJ00B0xmMn/ZiPXCWbz6jsBy5hiWw7vw6toP%0Ac8sgsGShUy+T9vHrAKgaPlR97BW0tqKT4kn7yDizTizOG764B+hqW/4I2AZMvzZIKdUBCAB+AIKL%0AelKlC5nCopQ6zD895GbA1a6lArTWuk1RBxjYqJ97D/DkI0h5uzqFcnF/pYKHTtxV051vuzqFcpH2%0A/KOuTqFc1HhnfalvJzS58RCHa87i01+U+HhKqSStdU3bsgISr67niDEBW4DhwN1AcFHDF0X1lPuW%0ANGEhhHAFXYyecs7rXzbLtNbLcrT/CATms+uzuY6ptVYq3wnSE4FwrfW57LpdtKIu9J3Jb7ut+g8F%0A8m0XQghXKc5Ysa0ALyuk/e6C2pRSMUqpulrrC0qpukBsPmG3AXcqpSYC1QEvpdRlrXWB48+FXuhT%0ASnkrpWYopd5WSvVQ2R4DTgL3F7avEEK4ghXt8KOU1gKjbMujgG+vDdBaP6i1bqS1bgxMAz4urCBD%0A0bMvPgFaAoeBMcBW4D5ggNb6nmKlL4QQTuDEb/TNA0KVUsfJHi+eB6CUClZKfVDSJy1qTPl6rfXN%0AtgN9AFwAGmmt00p6QCGEKE9ZTpp9obWOB7rns30v2Z3Ya7f/G/h3Uc9bVFG23yRCa21RSp2TgiyE%0AMLLiXOgzoqKKclul1CXbsgKq2NavTomrmHPDhBBuyxhf9i65omZfmJ2ViBBClIWK3lMWQgi3UqF7%0AykII4W4sBrjRfmlIURZCVCgV+tadQgjhbmRMWQghDETGlIUQwkBk+EIIIQxEhi+EEMJAZPaFEEIY%0AiLsPXxT6yyNlwcOrvnv/C+WjhlcVV6dQLs4/d6erUyhzljPRrk6hXFR+aYmrUygXnrWuL/Uvj/Rr%0A1NfhmvPd2e9LfbyyJj1lIUSFImPKQghhIO4+fCFFWQhRoZT3kGx5k6IshKhQLNJTFkII45DhCyGE%0AMBAZvhBCCAORnrIQQhiITIkTQggDka9ZCyGEgcjwhRBCGIgUZSGEMBCZfSGEEAYiPWUhhDAQmX0h%0AhBAGYtHu/St9UpSFEBWKjCk70aKFL9G7VzdSUlMZPXoKBw4eyRMzeHB/ZjzzGGazmfDwH5kxcy4A%0AI0fcz/x5szgflX3T83fe+ZAVH37u1PzzM+//niO0R1dSU1OZOG46h379LU/MoMF9eXLaBLTWXLgQ%0Ay7gxU0mIT2T5R4tp3rwJAD4+3ly8eIkunfs7+xTyMDW5Ca/uw8BkIuvXCLJ2hedqN990O14hD6CT%0AEwHI3L8Zy6EIVJ2GePUYiapUBaxWMn/5Hsufu11xCnmYW3eg8uDxoExk7vyBjI2rc7V73hmGZ5e+%0AYLWi09NI/+xNrNFnwexB5WGPYWrUHLQmffW7WI4fdtFZFM+suQuJ+Hk3fr41+Wblu65Ox2Eypuwk%0AvXt1o3mzJrRqfQe3dGrPkrdfpfMd/XLF+Pn5Mv/VWXS6tRdxcQmsWP4G3ULuYMvWHQD8Z/VaJj8x%0AyxXp5yu0x100bdqYDm27E9yxHa+/8SKhIfflijGbzbz62nPcGtyLhPhEXnz5af41bgTz577J6FGT%0A7XEvz53BpUvJzj6FvJTCK3QE6asWoJMTqDzqeSyRB9HxUbnCsv7YTeaPK3Pvm5lBxroP0IkxqOo1%0AqTxqNqmnDkN6qhNPIB/KROUHHiXlzZnopDiqTl9M1qFd2UXXJnPPNjK3Z7/5mG++hUqD/kXqkufw%0AvL0XACmvTERV96HKpJdJmT8Z3KA3NyAslGGD+jPz5QWuTqVY3H1M2eTqBBzVr19PPvn0SwB27d6P%0AT00fAgPr5Iq5vkkjIiNPEReXAMDmLdsZODDM6bk6Kqzv3Xzx+dcA7N1zEB8fbwICaueKUUqhlKJa%0A1eyfoKrhXZ3oCzF5nmvgvWGsWf1d+SddBFPd69FJseiLf4PVQtYfuzE3D3JoX50Yg07MPjd9OQmd%0AcglV1bs803WIqXELrH9HoeOjwZJF1r6f8Gh7a+6gtBT7oqpUGWyFwVS3EVlHfwVAX76ITrmS3Wt2%0AA8HtbsbHu4ar0yg2q9YOP4zIbYpy/XqBnPvrn97W+XMXqF8vMFdM5InTtGjRlOuua4DZbOae/j1p%0A2LCevf3egWHs37eJVV8so0GDerha3boBnD93wb4eFRVN3XoBuWKysrKY+sTz7NgVzh+RO2nZqhmf%0AfJT7o3Pn2zsSGxvHyRNnnJJ3YVQNX/SlBPu6Tk5AVffNE+fRsgOVH34JrwETUTX88rSb6jYBswc6%0AMbZc83WEqWYtrIl/29etiXEoH/88cZ5d+lLtxRVUGjiatP9kf9y3njuFR5tbwWRC+QdgbtQMk2/t%0APPuKsqOL8T8jKrQoK6WezrE8+Jq2ueWVVEklJV1k0mMz+PzTpfy09WvOnD6HxWIB4Pt1m2ja/Fba%0Adwjlxx8j+HD5Gy7O1jEeHh48MmYYd93enxuadea3I0eZMm18rphBg/uyZvX3Lsqw+CyRB0l99ynS%0APnwe66nf8eozJndANR+8+vyLjPDlYND/cPKTGfE9V2Y/QvrXK6jUe2j2tl82oBPjqDr9TSrdNw7L%0AyT/AzWcHGJ1FWx1+GFFRPeUhOZZnXNPWq6CdlFJjlVJ7lVJ7rdYrJU5uwvhR7N2zkb17NnIhOoYG%0AOXq99RvUtV+0y+n7dZvofEc/7ujSn6PHTnD8+EkAEhISycjIAGD5is9o3/7mEudVGmPGDidi51oi%0Adq4lOvpv6jeoa2+rVy+QC1G5hyZubnMDAKdPZY9ffvNVOLfc0t7ebjab6du/J1+vWeeE7IumkxNR%0A3v/0fFUNP/TlxNxBaVfAkgVA1qGfMAVe90+bV2Uq3zeFzO1fYY066YyUi2RNisvVuzX51kJfjC8w%0APnt44zbbzlbS1ywj5dVJpL33EqpqNawx58s75f9pFX34QhWwnN+6ndZ6mdY6WGsdbDJVK3FyS9/9%0AiOCOPQju2IO1azcw4sHsi2C3dGrPpYuXiI7O+9G2du3sj5U1a/owfvwolq/InmGRc/y5X78e/Pln%0AZInzKo0Plq2kS+f+dOncn/DvNzFk6EAAgju249KlZGJi/s4VfyEqhpatmuFfK7vQde12O0ePnrC3%0Adw25nePHThKVzxuUK1gvnEL51kH51AKTGY8bOmGJPJA7qJqPfdHcLAhrvG0Ix2Sm0sDHyPrtZyxH%0A9zox68JZzxzDVKceyj8AzB54dLiLrEP/zRWjav/TYTDf1AlrrK3welYCr0rZ21sFoS2WXBcIRdlz%0A9+GLomZf6AKW81svV+HrN9OrVzeO/vEzKampjBnzpL1t756NBHfsAWRPm2vTpjUAc15ZZO8pPzbp%0AEfr27UFWloXEhCQeGfOEM9PP18YN2wjt2ZX9h7aQmprKo+On29sidq6lS+f+REfH8tqrb7Fuw2dk%0AZWbx19koJo63jypx7319DHGBz05bydj0KZXunwrKRNbh7ei4KDzvGIA1+jSWyIN4dgjF3LwdWC3o%0A1CtkrPsAAHOrTpgatkBVqY7HTXcAkB7+ATr2L1eeEVitpK1aStVJc8BkJvOXjVgvnMWr7wgsZ45h%0AObwLr679MLcMAksWOvUyaR+/DoCq4UPVx15Bays6KZ60j9xnJsNTs+ex58AhkpIu0X3AcCaOHsGg%0Afj1dnVaRnNUDVkr5AauAxsBp4H6tdWI+ca8BfcjuBG8CJutCJlOrwiZaK6UswBWye8VVgKuXmBVQ%0AWWvtWVTiHl71jfl2VAo1vKq4OoVycf65O12dQpmznDHGJ4iyVvmlJa5OoVx41rq+wE/gjrq+VpDD%0ANedk3IESH89WbBO01vOUUs8Avlrr6dfEdAb+D+hi27QDmKG13lbQ8xbaU9Zam0uasBBCuIJFW5x1%0AqHuArrblj4BtwPRrYjRQGfAiuzPrCeSd05pDoUVZKVUZGA80Aw4BK7TWWcXLWwghnKc4X7NWSo0F%0AxubYtExrvczB3QO01lfntEYDAdcGaK1/UUptBS6QXZTf1lr/UdiTFjWm/BGQCWwHwoAbgcmF7iGE%0AEC5UnK9Z2wpwgUVYKfUjEJhP07PXPI9WSuU5sFKqGXAD0MC2aZNS6k6t9faCjllUUW6ttb7Z9uTL%0AAWPciEAIIQpQljck0lrfXVCbUipGKVVXa31BKVUXyO+bTgOB/2qtL9v2WQ/cRnZHN19FTYnLzJGc%0ADFsIIQzPifOU1wKjbMujgG/ziTkL3KWU8lBKeQJ3AYUOXxRVlNsqpS7ZHslAm6vLSqlLxTwBIYQo%0Ad06cpzwPCFVKHQfutq2jlApWSn1gi/kSOAEcBn4FftVaFzqHVWZfCCEqFGd9fVprHQ90z2f7XmCM%0AbdkCjCvO87rNrTuFEMIRcpN7IYQwEKPe08JRUpSFEBWK9JSFEMJA5OeghBDCQKSnLIQQBmLUm9c7%0ASoqyEKJCkQt9QghhIDJ8IYQQBmLUXxRxlBRlIUSFIj1lIYQwEHcfUy7056DcjVJqbDFuUO02KuJ5%0AVcRzgop5XhXxnIysqLvEuZuxRYe4pYp4XhXxnKBinldFPCfDqmhFWQgh3JoUZSGEMJCKVpQr6rhX%0ARTyvinhOUDHPqyKek2FVqAt9Qgjh7ipaT1kIIdyaWxdlpdQApZRWSrVSSt2slDpoeyQopU7Zln90%0AdZ7FpZTaqpTqec22J5RSS12VU2nlfK1s642VUqm21+h3pdS7Sim3+XtUSllsuR9RSn2nlKpp295Y%0AKXXkmtgXlFLTXJNp8VxzXquVUlWv2X718Yyrc62o3OY/ggIMBXYAQ7XWh7XW7bTW7cj+ldmnbOsF%0A/kS4gX0ODLlm2xDbdndlf61ybDthe73aAK2BAa5IrIRSbX9fNwEJwKOuTqiM5DyvDGD8NduvPua5%0AMMcKzW2LslKqOnAHMJq8BczdfQn0UUp5QXbvC6gHbHdhTiVW1Gultc4CdgLNnJxaWfkFqO/qJMrB%0Adtz3NXFbbluUgXuAH7TWx4B4pVQHVydUVrTWCcBuoLdt0xDgP9p9r8oW+lrZPiJ3J/tn2N2KUspM%0Adu5rc2xumvOjPv/0Nt2GUsqD7L+/q69JlWuGLx5wYXoVmjvf+2IosNi2/IVtfZ/r0ilzV4cwvrX9%0A/2jXplMq+b1Wb2MrXoAGvtVar3dRfiVRxZZ7feAPYFOOtqvDMkD2mLKTcyuNq+cF2T3l5bbl1Jzn%0AJMqPWxZlpZQf0A24WSmlATOglVJPuXFv8lrfAouUUu2Bqlprt3zDKei1ApZwTfFyM6la63a2Xv4G%0AsseU33RxTmVBiq+LuevwxX3AJ1rr67TWjbXWDYFTwJ0uzqvMaK0vA1uBFbj3Bb6CXquGLs6rTGit%0AU4DHgam2j/xClIq7FuWhwNfXbFtD7iv7FcHnQFvcuygX9FrNcEEu5UJrfQA4RMX7+8vp2jFlmX1R%0ATuQbfUIIYSDu2lMWQogKSYqyEEIYiBRlIYQwECnKQghhIFKUhRDCQKQoCyGEgUhRFkIIA5GiLIQQ%0ABvL/FDB43luYIYAAAAAASUVORK5CYII=%0A
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjaW_9C5hzHg0S9Tb0oohEpld4-LbdDSpCO8nbDJks7Ayh8sydOild-6IvmyKx7JXgRIzwDRiyzFXW6MtuY96d6wUf5-hhmC_U2-Pr0H6ITvdW__-Ct0zR8g_O9qq4OyDKNMzt2UXXU1ldl/s72-c/linear.png
COMPUTER PROGRAMMING
https://computerprogram4ru.blogspot.com/2018/08/python-regression-program-of-combined.html
https://computerprogram4ru.blogspot.com/
https://computerprogram4ru.blogspot.com/
https://computerprogram4ru.blogspot.com/2018/08/python-regression-program-of-combined.html
true
8672391763020279633
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS CONTENT IS PREMIUM Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy